3.906 \(\int \frac {x^5}{a+b+2 a x^2+a x^4} \, dx\)

Optimal. Leaf size=69 \[ \frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {a} \left (x^2+1\right )}{\sqrt {b}}\right )}{2 a^{3/2} \sqrt {b}}-\frac {\log \left (a x^4+2 a x^2+a+b\right )}{2 a}+\frac {x^2}{2 a} \]

[Out]

1/2*x^2/a-1/2*ln(a*x^4+2*a*x^2+a+b)/a+1/2*(a-b)*arctan((x^2+1)*a^(1/2)/b^(1/2))/a^(3/2)/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1114, 703, 634, 618, 204, 628} \[ \frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {a} \left (x^2+1\right )}{\sqrt {b}}\right )}{2 a^{3/2} \sqrt {b}}-\frac {\log \left (a x^4+2 a x^2+a+b\right )}{2 a}+\frac {x^2}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[x^5/(a + b + 2*a*x^2 + a*x^4),x]

[Out]

x^2/(2*a) + ((a - b)*ArcTan[(Sqrt[a]*(1 + x^2))/Sqrt[b]])/(2*a^(3/2)*Sqrt[b]) - Log[a + b + 2*a*x^2 + a*x^4]/(
2*a)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 703

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*
(m - 1)), x] + Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x])/(a + b*x + c*x^2),
 x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*
e, 0] && GtQ[m, 1]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {x^5}{a+b+2 a x^2+a x^4} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x^2}{a+b+2 a x+a x^2} \, dx,x,x^2\right )\\ &=\frac {x^2}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {-a-b-2 a x}{a+b+2 a x+a x^2} \, dx,x,x^2\right )}{2 a}\\ &=\frac {x^2}{2 a}-\frac {\operatorname {Subst}\left (\int \frac {2 a+2 a x}{a+b+2 a x+a x^2} \, dx,x,x^2\right )}{2 a}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{a+b+2 a x+a x^2} \, dx,x,x^2\right )}{2 a}\\ &=\frac {x^2}{2 a}-\frac {\log \left (a+b+2 a x^2+a x^4\right )}{2 a}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{-4 a b-x^2} \, dx,x,2 a \left (1+x^2\right )\right )}{a}\\ &=\frac {x^2}{2 a}+\frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {a} \left (1+x^2\right )}{\sqrt {b}}\right )}{2 a^{3/2} \sqrt {b}}-\frac {\log \left (a+b+2 a x^2+a x^4\right )}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 62, normalized size = 0.90 \[ \frac {\sqrt {a} \left (x^2-\log \left (a \left (x^2+1\right )^2+b\right )\right )+\frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {a} \left (x^2+1\right )}{\sqrt {b}}\right )}{\sqrt {b}}}{2 a^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/(a + b + 2*a*x^2 + a*x^4),x]

[Out]

(((a - b)*ArcTan[(Sqrt[a]*(1 + x^2))/Sqrt[b]])/Sqrt[b] + Sqrt[a]*(x^2 - Log[b + a*(1 + x^2)^2]))/(2*a^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 157, normalized size = 2.28 \[ \left [\frac {2 \, a b x^{2} - 2 \, a b \log \left (a x^{4} + 2 \, a x^{2} + a + b\right ) + \sqrt {-a b} {\left (a - b\right )} \log \left (\frac {a x^{4} + 2 \, a x^{2} + 2 \, \sqrt {-a b} {\left (x^{2} + 1\right )} + a - b}{a x^{4} + 2 \, a x^{2} + a + b}\right )}{4 \, a^{2} b}, \frac {a b x^{2} - a b \log \left (a x^{4} + 2 \, a x^{2} + a + b\right ) - \sqrt {a b} {\left (a - b\right )} \arctan \left (\frac {\sqrt {a b}}{a x^{2} + a}\right )}{2 \, a^{2} b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^4+2*a*x^2+a+b),x, algorithm="fricas")

[Out]

[1/4*(2*a*b*x^2 - 2*a*b*log(a*x^4 + 2*a*x^2 + a + b) + sqrt(-a*b)*(a - b)*log((a*x^4 + 2*a*x^2 + 2*sqrt(-a*b)*
(x^2 + 1) + a - b)/(a*x^4 + 2*a*x^2 + a + b)))/(a^2*b), 1/2*(a*b*x^2 - a*b*log(a*x^4 + 2*a*x^2 + a + b) - sqrt
(a*b)*(a - b)*arctan(sqrt(a*b)/(a*x^2 + a)))/(a^2*b)]

________________________________________________________________________________________

giac [A]  time = 0.25, size = 58, normalized size = 0.84 \[ \frac {x^{2}}{2 \, a} + \frac {{\left (a - b\right )} \arctan \left (\frac {a x^{2} + a}{\sqrt {a b}}\right )}{2 \, \sqrt {a b} a} - \frac {\log \left (a x^{4} + 2 \, a x^{2} + a + b\right )}{2 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^4+2*a*x^2+a+b),x, algorithm="giac")

[Out]

1/2*x^2/a + 1/2*(a - b)*arctan((a*x^2 + a)/sqrt(a*b))/(sqrt(a*b)*a) - 1/2*log(a*x^4 + 2*a*x^2 + a + b)/a

________________________________________________________________________________________

maple [A]  time = 0.01, size = 84, normalized size = 1.22 \[ -\frac {b \arctan \left (\frac {2 a \,x^{2}+2 a}{2 \sqrt {a b}}\right )}{2 \sqrt {a b}\, a}+\frac {x^{2}}{2 a}+\frac {\arctan \left (\frac {2 a \,x^{2}+2 a}{2 \sqrt {a b}}\right )}{2 \sqrt {a b}}-\frac {\ln \left (a \,x^{4}+2 a \,x^{2}+a +b \right )}{2 a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a*x^4+2*a*x^2+a+b),x)

[Out]

1/2/a*x^2-1/2*ln(a*x^4+2*a*x^2+a+b)/a+1/2/(a*b)^(1/2)*arctan(1/2*(2*a*x^2+2*a)/(a*b)^(1/2))-1/2/a/(a*b)^(1/2)*
arctan(1/2*(2*a*x^2+2*a)/(a*b)^(1/2))*b

________________________________________________________________________________________

maxima [A]  time = 3.03, size = 58, normalized size = 0.84 \[ \frac {x^{2}}{2 \, a} + \frac {{\left (a - b\right )} \arctan \left (\frac {a x^{2} + a}{\sqrt {a b}}\right )}{2 \, \sqrt {a b} a} - \frac {\log \left (a x^{4} + 2 \, a x^{2} + a + b\right )}{2 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(a*x^4+2*a*x^2+a+b),x, algorithm="maxima")

[Out]

1/2*x^2/a + 1/2*(a - b)*arctan((a*x^2 + a)/sqrt(a*b))/(sqrt(a*b)*a) - 1/2*log(a*x^4 + 2*a*x^2 + a + b)/a

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 302, normalized size = 4.38 \[ \frac {x^2}{2\,a}-\frac {\ln \left (a\,x^4+2\,a\,x^2+a+b\right )}{2\,a}-\frac {\mathrm {atan}\left (\frac {a\,b\,\left (x^2\,\left (\frac {\frac {\sqrt {a}\,\left (2\,a-2\,b\right )}{\sqrt {b}}+\frac {\left (a-b\right )\,\left (4\,a\,b-12\,a^2\right )}{4\,a^{3/2}\,\sqrt {b}}}{a+b}+\frac {\sqrt {a}\,\left (6\,a-2\,b-\frac {{\left (a-b\right )}^2}{b}+\frac {2\,a\,b-6\,a^2}{a}\right )}{\sqrt {b}\,\left (a+b\right )}\right )-\frac {\frac {\left (a-b\right )\,\left (16\,a\,b-\frac {8\,a^3+8\,b\,a^2}{a}+16\,a^2\right )}{4\,a^{3/2}\,\sqrt {b}}-\frac {\left (16\,a^3+16\,b\,a^2\right )\,\left (a-b\right )}{8\,a^{5/2}\,\sqrt {b}}}{a+b}+\frac {\sqrt {a}\,\left (4\,a+4\,b-\frac {8\,a\,b-\frac {8\,a^3+8\,b\,a^2}{2\,a}+8\,a^2}{a}-\frac {{\left (a-b\right )}^2\,\left (a^3+b\,a^2\right )}{a^3\,b}\right )}{\sqrt {b}\,\left (a+b\right )}\right )}{a^2-2\,a\,b+b^2}\right )\,\left (a-b\right )}{2\,a^{3/2}\,\sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a + b + 2*a*x^2 + a*x^4),x)

[Out]

x^2/(2*a) - log(a + b + 2*a*x^2 + a*x^4)/(2*a) - (atan((a*b*(x^2*(((a^(1/2)*(2*a - 2*b))/b^(1/2) + ((a - b)*(4
*a*b - 12*a^2))/(4*a^(3/2)*b^(1/2)))/(a + b) + (a^(1/2)*(6*a - 2*b - (a - b)^2/b + (2*a*b - 6*a^2)/a))/(b^(1/2
)*(a + b))) - (((a - b)*(16*a*b - (8*a^2*b + 8*a^3)/a + 16*a^2))/(4*a^(3/2)*b^(1/2)) - ((16*a^2*b + 16*a^3)*(a
 - b))/(8*a^(5/2)*b^(1/2)))/(a + b) + (a^(1/2)*(4*a + 4*b - (8*a*b - (8*a^2*b + 8*a^3)/(2*a) + 8*a^2)/a - ((a
- b)^2*(a^2*b + a^3))/(a^3*b)))/(b^(1/2)*(a + b))))/(a^2 - 2*a*b + b^2))*(a - b))/(2*a^(3/2)*b^(1/2))

________________________________________________________________________________________

sympy [B]  time = 1.60, size = 144, normalized size = 2.09 \[ \left (- \frac {1}{2 a} - \frac {\sqrt {- a^{3} b} \left (a - b\right )}{4 a^{3} b}\right ) \log {\left (x^{2} + \frac {4 a b \left (- \frac {1}{2 a} - \frac {\sqrt {- a^{3} b} \left (a - b\right )}{4 a^{3} b}\right ) + a + b}{a - b} \right )} + \left (- \frac {1}{2 a} + \frac {\sqrt {- a^{3} b} \left (a - b\right )}{4 a^{3} b}\right ) \log {\left (x^{2} + \frac {4 a b \left (- \frac {1}{2 a} + \frac {\sqrt {- a^{3} b} \left (a - b\right )}{4 a^{3} b}\right ) + a + b}{a - b} \right )} + \frac {x^{2}}{2 a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(a*x**4+2*a*x**2+a+b),x)

[Out]

(-1/(2*a) - sqrt(-a**3*b)*(a - b)/(4*a**3*b))*log(x**2 + (4*a*b*(-1/(2*a) - sqrt(-a**3*b)*(a - b)/(4*a**3*b))
+ a + b)/(a - b)) + (-1/(2*a) + sqrt(-a**3*b)*(a - b)/(4*a**3*b))*log(x**2 + (4*a*b*(-1/(2*a) + sqrt(-a**3*b)*
(a - b)/(4*a**3*b)) + a + b)/(a - b)) + x**2/(2*a)

________________________________________________________________________________________